
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1.40.2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. На рисунке представлен график перехода идеального газа, количество вещества которого постоянно, из состояния 1 в состояние 6 в координатах (р. Т). К изопроцессам можно отнести следующие переходы:

1) $1 \to 2$ 2) $2 \to 3$ 3) $3 \to 4$ 4) $4 \to 5$

2. Установите соответствие между физическими величинами и учёными-физиками, в честь которых названы единицы этих величин.

А. Магнитный поток	1) O _M
Б. Сила	2) Ньютон
В. Электрическое сопротивление	3) Вебер

1) A1 52 B3

2) А1 Б3 В2

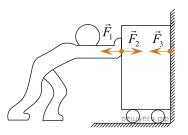
3) А2 Б1 В3

4) А2 Б3 В1

5) A3 F2 B1

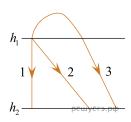
3. По параллельным участкам соседних железнодорожных путей навстречу друг другу равномерно двигались два поезда: пассажирский и товарный. Модуль скорости пассажирского поезда $\upsilon_1=60~{{
m KM}\over {
m q}},$ товарного – $\upsilon_2=48~{{
m KM}\over {
m q}}.$ Если длина товарного поезда $L=0,45~{
m KM},$ то пассажир, сидящий у окна в вагоне пассажирского поезда, заметил, что он проехал мимо товарного поезда за промежуток времени Δt , равный:

1) 10 c


2) 15 c

3) 20 c

4) 25 c

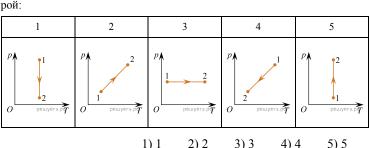

5) 30 c

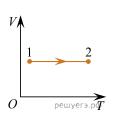
4. Человек толкает контейнер, который упирается в вертикальную стену (см.рис.). На рисунке показаны F_1 —сила, с которой контейнер действует на человека; F_2 — сила, с которой человек действует на контейнер; F_3 — сила, с которой стена действует на контейнер. Какое из предложенных выражений в данном случае является математической записью третьего закона Ньютона?

1)
$$\vec{F}_1 = -\vec{F}_2$$
 2) $\vec{F}_1 = \vec{F}_3$ 3) $\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = 0$ 4) $\vec{F}_2 = -\vec{F}_3$ 5) $\vec{F}_1 - \vec{F}_2 + \vec{F}_3 = 0$

5. Тело перемещали с высоты h_1 на высоту h_2 по трём разным траекториям: 1, 2 и 3 (см. рис.). Если при этом сила тяжести совершила работу A_1 , A_2 и A_3 соответственно, то для этих работ справедливо h_1 соотношение:

1)
$$A_1 > A_2 = A_3$$
 2) $A_1 > A_2 > A_3$ 3) $A_1 = A_2 = A_3$ 4) $A_1 = A_2 < A_3$ 5) $A_1 < A_2 < A_3$

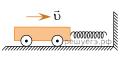

6. Рабочий удерживает за один конец однородную доску массой m = 19 кг так, что она упирается другим концом в землю и образует угол $\alpha = 45^{\circ}$ с горизонтом (см. рис.). Если сила \vec{F} , с которой рабочий действует на доску, перпендикулярна доске, то модуль этой силы равен:



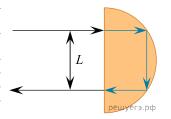
7. Число N_1 атомов железа $\left(M_1 = 56 \; rac{\Gamma}{
m MOJIb}
ight)$ имеет массу $m_1 = 4 \; \Gamma, \; N_2$ атомов лития $\left(M_2=7\ rac{\Gamma}{
m MOJIL}
ight)$ имеет массу $m_2=1\ \Gamma.$ Отношение $rac{N_1}{N_2}$ равно:

1)
$$\frac{1}{4}$$
 2) $\frac{1}{2}$ 3) 1 4) 2 5) 4

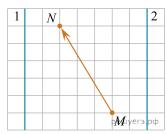
8. На рисунке представлен график зависимости объема идеального газа определенной массы от абсолютной температуры. График этого процесса в координатах $(p,\ T)$ представлен на рисунке, обозначенном цифрой:



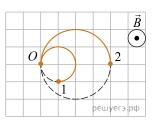
- **9.** В герметично закрытом сосуде находится гелий, количество вещества которого v = 10 моль. Если за некоторый промежуток времени температура газа изменилась от t_1 = 17 °C до t_2 = 137 °C, то изменение внутренней энергии гелия равно:
 - 1) -15 кДж
- 2) -10 кДж
- 3) 6,6 кДж
- 4) 10 кДж
- 5) 15 кДж
- **10.** Сосуд, плотно закрытый подвижным поршнем, заполнен воздухом с относительной влажностью $\phi_1 = 30\%$. Если при изотермическом сжатии объём воздуха в сосуде уменьшится в три раза, то относительная влажность ϕ_2 воздуха будет равна:
 - 1) 100%
- 2) 90%
- 3) 30%
- 4) 15%
- 5) 10%
- 11. Тело, которое падало без начальной скорости $(v_0=0\ \frac{M}{C})$ с некоторой высоты, за последнюю секунду движения прошло путь s=35 м. Высота h, с которой тело упало, равна ... м.
- 12. На горизонтальной поверхности лежит однородный шар диаметром D=1,0 м и массой $m_1=1,0$ т. Над центром шара расположено небольшое тело на высоте H=1,5 м от горизонтальной поверхности (см. рис.). Если модуль силы гравитационного притяжения, действующей на тело со стороны шара, F=1,4 мкH, то масса m_2 тела равна ... кг.


13. Камень бросили вертикально вверх с поверхности Земли со скоростью, модуль которой $\upsilon=20~\frac{\rm M}{\rm c}$. Кинетическая энергия камня равна его потенциальной на высоте h, равной ... м.

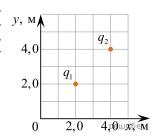
14. К тележке массой m=0,49 кг прикреплена невесомая пружина жёсткостью k=400 Н/м. Тележка, двигаясь без трения по горизонтальной плоскости, сталкивается с вертикальной стеной (см. рис.). От момента соприкосновения пружины со стеной до момента остановки тележки пройдёт промежуток времени Δt , равный ... **мс**.


- **15.** В сосуде вместимостью V = 5.0 л находится идеальный одноатомный газ. Если суммарная кинетическая энергия всех молекул $E_0 = 600$ Дж, то давление p газа на стенки сосуда ... кПа.
- **16.** В теплоизолированный сосуд, содержащий $m_1 = 100$ г льда ($\lambda = 330$ кДж/кг) при температуре плавления $t_1 = 0$ °C, влили воду (c = 4,2 10^3 Дж/(кг °C)) массой $m_2 = 50$ г при температуре $t_2 = 88$ °C. После установления теплового равновесия масса m_3 льда в сосуде станет равной ... г.
- **17.** Идеальный одноатомный газ, количество вещества которого v = 7,0 моль, при изобарном охлаждении отдал количество теплоты $|Q_{\text{охл}}| = 24$ кДж. Если при этом объем газа уменьшился в k = 2,0 раза, то начальная температура газа t_1 равна ... °C.
- **18.** Узкий параллельный пучок света падает по нормали на плоскую поверхность прозрачного $\left(n=\frac{4}{3}\right)$ полуцилиндра

радиусом $R=3\sqrt{3}$ см выходит из неё параллельно падающему пучку света (см. рис.). Если от момента входа в полуцилиндр до момента выхода из него потери энергии пучка не происходит, то минимальное расстояние L между падающим и выходящим пучками света равно...см.

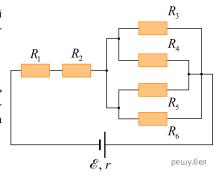


Примечание. Полуцилиндр — это тело, образованное рассечением цилиндра плоскостью, в которой лежит его ось симметрии.


19. На рисунке изображён участок плоского конденсатора с обкладками 1 и 2, которые перпендикулярны плоскости рисунка. Если при перемещении точечного положительного заряда q=14 нКл из точки M в точку N электрическое поле конденсатора совершило работу A=390 нДж, то разность потенциалов $\phi_1-\phi_2$ между обкладками равна ... В.

20. Два иона (1 и 2) с одинаковыми заряди $q_1=q_2$, вылетевшие одновременно из точки O, равномерно движутся по окружностям под действием однородного магнитного поля, линии индукции \vec{B} которого перпендикулярны плоскости рисунка. На рисунке показаны траектории этих частиц в некоторый момент времени t_1 . Если масса первой частицы $m_1=10,0$ а.е.м., то масса второй частицы m_2 равна ... а. е. м.

- **21.** Электрический нагреватель подключен к электрической сети, напряжение в которой изменяется по гармоническому закону. Амплитудное значение напряжения в сети U_0 = 72 В. Если действующее значение силы тока в цепи $I_{\rm д}$ = 0,57 A, то нагреватель потребляет мощность P, равную ... Вт.
- **22.** Радар, установленный на аэродроме, излучил в сторону удаляющегося от него самолёта два коротких электромагнитных импульса, следующих друг за другом через промежуток времени $\tau=45\,$ мс. Эти импульсы отразились от самолёта и были приняты радаром. Если модуль скорости, с которой самолёт удаляется от радара, $\upsilon=80\frac{\rm M}{\rm c}$, то промежуток времени между моментами излучения и приёма второго импульса больше, чем промежуток времени между моментами излучения и приёма первого импульса, на величину Δt , равную ... нс.
- **23.** Электростатическое поле в вакууме создано двумя точечными зарядами $q_1=24$ нКл и $q_2=-32$ нКл (см. рис.), лежащими в координатной плоскости xOy. Модуль напряжённости E результирующего электростатического поля в начале координат вавен ... $\frac{B}{-}$.

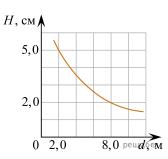

- **24.** Два одинаковых положительных точечных заряда расположены в вакууме в двух вершинах равностороннего треугольника. Если потенциал электростатического поля в третьей вершине $\varphi = 30 \text{ B}$, то модуль силы F электростатического взаимодействия между зарядами равен ... нН.
- **25.** Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 A, C=-0,50 $\frac{\mathrm{A}}{\mathrm{c}}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \,\mathrm{Om}.$$

В резисторе R_6 выделяется тепловая мощность $P_6=90.0$ Вт. Если внутреннее сопротивление источника тока r=4.00 Ом, то ЭДС \pounds источника тока равна ... В.



- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm C}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm TI}=6,4\cdot 10^{-15}~{\rm H}$, то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0,20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^4$ $\frac{\mathrm{pag}}{\mathrm{c}}$, то ёмкость C конденсатора равна ... мк Φ .

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

